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Abstract

A two-dimensional numerical study is carried out to obtain the correction curve for the near-wall measurements by an infinitely long
hot wire having been calibrated under free stream condition for the two extreme cases of isothermal and adiabatic wall conditions.
Unlike previous studies particularly in experiments where the correction curve is primarily based on only the distance (h) between the
wall and the wire expressed in wall units ðY þ � hU s

m Þ, it is found that a second dimensionless parameter h0 (�h/D) accounting for the effect
of the hot wire diameter (D) is necessary to describe fully the overall near-wall correction curve. Our calculations also reveal a possible
reason for the apparent discrepancy between the near-wall hot wire correction curves of Chew and Shi [Y.T. Chew, S.X. Shi, Wall prox-
imity influence on hot-wire measurements, In: R.M.C. So, C.G. Speziale, B.E. Launder (Eds.), Near-Wall Turbulent Flows, Elsevier,
Amsterdam, 1993, pp. 609–619] and Lange et al. [C.F. Lange, F. Durst, M. Breuer, Wall effects on heat losses from hot-wires. Int. J.
Heat Fluid Flow 20 (1999) 34] next to a thermally non-conducting wall.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Hot wire correction factor; Near-wall measurement; Critical Y þ
c ; Overheat ratio
1. Introduction

In Perry and Morrison [3], it was found that their hot
wire system with the DANTEC-made CTA operating
under free stream condition has a frequency of well over
5 kHz when subject to direct velocity perturbations via
the Karman vortex shed from one side of the cylinder.
The said frequency response agreed well with the conven-
tional square-wave voltage perturbation tests, which indi-
cates a roll-off frequency of 5 kHz. Subsequent model/
theory put forth by Freymuth [4] has shown the near-
equivalence between the velocity and voltage perturbation
tests in determining the dynamic response of the hot wire
system. The square-wave voltage perturbation test, thus,
has been used extensively and almost exclusively by exper-
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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imentalists to justify the very rapid thermal response of the
hot wire in faithful measurement of the fluctuating velocity
in a turbulent flow with its typical range of frequency
expected [5,6]. That is, a hot wire having been calibrated
under imposed mean free stream condition can be
employed for fluctuating velocity measurement. This prac-
tice is incumbent on the heat transfer characteristics of hot
wire as exposed in the measured flow to be the same as that
during the calibration. Such assumption, however, is no
longer valid when the same hot wire is used in near-wall
measurements. The wall may change the heat transfer char-
acteristics of the hot wire with its calibration curve
obtained under free stream condition, since more or even
less heat is released from the hot wire due to the influence
of wall effects. Therefore, some corrections on the mea-
sured velocity are needed for the near-wall measurement
for the hot wire having been calibrated under free stream
(wall-remote) flow condition. The problem was studied
experimentally by numerous researchers over the years like
Wills [7], Oka and Kostic [8], Singh and Shaw [9], Hebber
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Nomenclature

Cd drag coefficient
Cu correction factor ¼ U0

Umeas

Cua correction factor for adiabatic wall case
Cui correction factor for isothermal wall case
D diameter of hot wire
du+ correction factor ¼ Umeas�U 0

U s

d+ Reynolds number ¼ U sD
m

Ec Eckert number ¼ U2
0

CP ðTw�T1Þ

Gr Grashof number ¼ gbðTw�T1ÞD3

m21
H the distance from the center of the hot wire to

the wall
H 0 heat flux through the closed circulation which

surrounds the cylindrical hot wire
H0 the non-dimensional distance from the center of

the hot wire to the wall = h
D

L hot wire length
Nu Nusselt number
Nu0 Nusselt number obtained under free stream

operating condition
Num measured Nusselt number
Nuf Nusselt number (Nu0) based on fluid properties

evaluated at the film temperature
Pe Peclet number = RePr

Pr Prandtl number ¼ l1Cp1
k1

Re Reynolds number ¼ U 0D
m1

Ref Reynolds number based on fluid properties
evaluated at the film temperature

T temperature
U0 the (true) upstream incoming flow velocity at the

location of hot wire center
Umeas measured velocity value
Us friction velocity
Y+ non-dimensional wall distance = hU s

m � h0 U sD
m

Y þ
c critical Y+, beyond which wall influence can be

neglected

Greek symbols

ef maximum difference between the respective val-
ues of stream function on successive iterations

ev maximum difference between the respective val-
ues of vorticity on successive iterations

et maximum difference of the temperature on suc-
cessive iterations

m kinematic viscosity
s overheat ratio (�Tw/T1)

Subscripts

1 at the inlet of computational domain
w conditions at the hot wire
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[10], Krishamoorthy et al. [11] and Chew et al. [12], to
name a few. Numerically, Bhatia et al. [13], Chew and
Shi [1] and Lange et al. [2,14], have tried to find a suitable
universal correction for the near-wall hot wire measure-
ments velocity, but met with limited success and in some
instances presented conflicting trends.

In early hot wire applications, Van der Hegge Zijnen
[15] measured the heat loss of the hot wire in still air near
the wall as the required correction quantity to the mea-
sured signal for the flowing air in the near-wall region.
Wills [7] introduced the term kw(2y/D) to account for the
wall effect in his experimentally obtained wall corrections
relationship for laminar flow:

Nu
T w

T a

� ��0:17

¼ Aþ kw
2y
D

� �
þ B � Re0:45D . ð1Þ

Here kw is the ratio of the thermal conductivity of wall
material to the thermal conductivity of air; y is the distance
of hot wire from the wall; D is the wire diameter; Nu is the
Nusselt number; ReD is Reynolds number based on wire
diameter, and A and B are arbitrary constants. One may
also note that Collis and Williams [16] fitted their experi-
mental data in the range of Reynolds number from 0.02
to 44 on the curve:
Nu
T f

T a

� ��0:17

¼ 0:24þ 0:56Re0:45D ð2Þ

where the fluid properties were evaluated at the film tem-
perature, Tf (�(Twire + Ta)/2), the mean of hot wire and
ambient air temperature. On comparing the two equations,
it is clear that Eq. (1) implies the additional heat loss due to
the presence of the wall is (or can be) determined by the
dimensionless parameter h0 (� y/D � h/D). For turbulent
flow measurement, Wills [7] suggested that only half of
the correction for laminar flow should be employed. How-
ever, no explanation, whether physical or otherwise, is
given.

Still, Oka and Kostic [8] and Hebbar [10] obtained the
corrections from measurements in turbulent channel and
boundary layer flows, respectively, and suggested that the
correction can universally collapsed to a single curve
DU+ = f(Y+). Here DU+ and Y+are defined as

DUþ ¼ Umeas � U 0

U s
ð3Þ

Y þ ¼ yU s

m
ð4Þ

where Umeas is the measured apparent velocity, U0 is the ac-
tual velocity, and Us is the wall shear velocity. Such a cor-



Fig. 1. Schematic drawing of the computational region.
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rection curve seems to imply that the near-wall effect is (at
least directly) independent of Reynolds number and wire
diameter.

Krishnamoorthy et al. [11] carried out experimental
investigation on the influence of wire diameter and temper-
ature loading on the near-wall velocity correction factor.
They suggested that the increase of the hot wire diameter
and temperature loading give rise to a larger correction
at a given Y+, which implies that the correction is not
exclusively a function of the non-dimensional wall distance
Y+. Still Singh and Shaw [9] pointed out that the correction
is independent of wall conductivity, while Polyakov and
Shindin [17] and Zemskaya et al. [18] showed otherwise
the importance of wall thermal conductivity. And perhaps
Bruun [19] has aptly summed up with the remark that
‘‘. . .no universal correction curve or procedure has been
established . . .’’ thus far.

Due to the inherent experimental difficulties of accurate
near-wall measurements and limitations of varying the
numerous parametric operating conditions, numerical
experiment to study the near-wall effects appears to be an
attractive alternative especially with the advent of powerful
computer and new computational methodology. One of the
first from Bhatia et al. [13] considered the simplified model
with the wire taken as a line source. Hence wire diameter
influence on the correction of hot wire was ignored; how-
ever, Krishnamoorthy et al. [11] experimentally showed
that diameter influence is an important consideration for
near-wall correction.

Among the other numerical studies to find the near-wall
measurement correction curves, Chew and Shi [1] and
Lange et al. [2,14] conducted fairly extensive works.
Although both obtained similar near-wall hot wire correc-
tion curve for conducting wall with isothermal boundary
condition, their respective hot wire correction curve exhibit
completely opposite trend for non-conducting wall of adi-
abatic thermal boundary condition. Chew and Shi [1]
showed that for the non-conducting wall, as the hot wire
is positioned increasingly close to the wall, the heat loss
from the wire remains higher than the corresponding case
without the presence of the wall; they attributed this phe-
nomenon to the distortion of velocity field by the wall
and consequent alteration of the heat transfer characteris-
tics of the hot wire such that there is an overall larger heat
loss to the flow. On the other hand, Lange et al. [2] pointed
out that for a perfectly insulating wall material, ‘‘. . .the dif-
fusive heat flux perpendicular to the main flow that would
occur in a free stream is suppressed. This suppression
causes an accumulation of heat between the cylinder and
the wall, reducing the temperature gradient in this region
. . .’’, and hence leading to a reduction in the measured
Nusselt number. This discrepancy in the trend observed
is but perhaps not unexpected since there are several differ-
ent factors which may influence the results, like the domain
size employed, the convergence criteria and assump-
tions concerning the physical properties of the fluid such
as use of the mean film temperature and others. A more
extensive investigation is required to resolve this
discrepancy.

This work is aimed at using a reasonable domain size for
computation and to resolve the discrepancy of trend as
observed between Chew and Shi [1] and Lange et al. [2]
by solving the coupled Navier–Stokes equation with the
energy equation in a two-dimensional flow via control vol-
ume method. Further, some of the important parameters
like wall conductivity, wire diameters, distance from the
wall, overheat ratio on the near-wall measurement are sys-
tematically investigated and their respective influences
compared. Finally the correction curves for (universal)
applications to near-wall hot wire measurements based
on the main dimensionless parametric groupings are
obtained.

2. Governing equations and boundary conditions

The following assumptions and considerations are
adopted in the numerical analysis:

1. The fluid flow and heat transfer are regarded as incom-
pressible, steady, 2-D flow past an infinitely long circular
wire that is aligned parallel to the wall and normal to the
flow. This consideration was based on Azad [20], which
showed that for measurements within the viscous sub-
layer with a single normal probe, the wire must be
straight and parallel to the wall.

2. The wire is subjected to an inflow shear velocity field
varying linearly with the distance from the wall similar
to a viscous sublayer flow.

3. The properties of fluid, like viscosity, thermal conductiv-
ity, etc., are taken as fully temperature dependent. The
body force is accounted for as in Boussinesq�s
assumption.

4. Natural convection and viscous heating are included,
and the direction of gravity is in the vertical direction
and perpendicular to the coming flow.

The flow past a cylinder in the domain is depicted in
Fig. 1. Boundary B1 is the inflow boundary, B2 is the
top boundary, B3 is the wall boundary, B4 is the outflow
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boundary and boundary, B5 is the surface of hot wire. H
stands for the distance between top boundary (B2) and wall
boundary (B3), while h is the distance between the center of
hot wire to the wall boundary (B3).

Taking the diameter of hot wire D as the characteristic
length, the upstream flow velocity at the wire location
(U0) as the characteristic velocity, the following dimension-
less variables (as indicated by the �*� sign) are:

x� ¼ x
D

u� ¼ u
U 0

p� ¼ p

q1U
2
0

T � ¼ ðT � T1Þ
ðT w � T1Þ

l� ¼ l
l1

k� ¼ k
k1

Here the subscript �1� denotes the condition at the up-
stream location and the variables denote the usual mean-
ings. The non-dimensionalised governing equations of
continuity, momentum and energy can be expressed respec-
tively as follows:

Continuity equation:

o

ox�i
ðu�i Þ ¼ 0 i ¼ 1; 2 ð5Þ

Momentum equations:

u�i
o

ox�i
ðu�j Þ ¼

op�

ox�j
þ 1

Re
o

ox�i
l�ðT �Þ

ou�j
ox�i

� �
þ Gr

Re2

� �
T � i ¼ 1; 2

ð6Þ

Energy equation:

o

ox�i
u�i T

�� �
¼ 1

Re � Pr

� �
o

ox�i
k� T �ð Þ oT

�

ox�i

� �
þ Ec
Re

� U� i ¼ 1; 2

ð7Þ
Here ui and xi are the Cartesian velocity components and
coordinates, respectively. The dissipation function is

U� ¼ ou�i
ox�j

þ
ou�j
ox�i

 !
ou�i
ox�j

ð8Þ

where l* is the dimensionless dynamic viscosity given by

l� ¼ T �ðs� 1Þ þ 1:0½ �
3
2

1þ Sl
T1

ðT �ðs� 1Þ þ 1:0Þ þ Sl
T1

 !
ð9Þ

and k* is the dimensionless thermal conductivity of fluid
such that

k� ¼ T �ðs� 1Þ þ 1:0½ �
3
2

1þ Sk
T1

ðT �ðs� 1Þ þ 1:0Þ þ Sk
T1

 !
ð10Þ

One may note that both l* and k* are based on Sutherland
Formula [21] which expresses how the physical properties
of fluid changes with the temperature as reflected in s
(�Tw/T1, the overheat ratio of hot wire). Sl and Sk are
effective temperatures called the Sutherland constants,
which are characteristic of the gas. For air, Sl and Sk are
taken as constants at 111 K and 194 K, respectively.
Eqs. (5)–(7) reveal the dimensionless parameters affect-
ing the flow field and heat transfer characteristic as Rey-
nolds number ðRe � U0D

m1
Þ, Prandtl number ðPr � l1CP

k1
Þ,

Grashof number ðGr � gbðTw�T1ÞD3

m21
Þ, and Eckert number

ðEC � U2
0

CP ðTw�T1
Þ.

The average Nusselt number is defined as

Nu ¼
1

A

I
qD

kðT w � T1Þ
dA ¼ H 0

pkðT w � T1Þ
ð11Þ

where H 0 is the heat flux through the closed circulation
which surrounds the cylindrical hot wire.

The corresponding dimensionless boundary conditions
in Fig. 1 are as follows:

B1 : x� ¼ x�s u�ðy�Þ ¼ ðu�0=h�Þy� v� ¼ 0 T � � T �
1 ¼ 0

B2 : y� ¼ H � u� ¼ ðu�0=h�ÞH � v� ¼ 0 T � � T �
1 ¼ 0

B3 : y� ¼ 0 u� ¼ 0 v� ¼ 0;

T � � T �
1 ¼ 0 isothermal or

oT �

oy�
¼ 0 adiabatic

B4 : x� ¼ x�e ou�=ox� ¼ ov�=ox� ¼ 0 oT �=ox� ¼ 0

B5 : u� ¼ v� ¼ 0 T � � T �
wire ¼ 1:0
3. Numerical calculations: grid distribution and size

of computational domain

For the spatial discretization of governing equations
(5)–(7), the finite volume method with a collocated arrange-
ment of the variables was employed. Eqs. (6) and (7) are
integrated over each control volume, leading to a balance
equation for the fluxes through the control volume faces
and the volumetric sources. The fluid properties in Eqs.
(6) and (7) are calculated as functions of temperature by
Sutherland Formula defined in Eqs. (9) and (10), and
updated at each new iteration. The diffusion contributions
to the fluxes are evaluated using a second order central dif-
ferencing scheme, while the convection contributions to the
fluxes are evaluated using the second order upwind differ-
encing scheme to reduce the effects of numerical diffusion
on the solution. For the pressure calculation, a pressure
correction equation is used instead of Eq. (6) and was
solved iteratively with Eq. (7) following the SIMPLEC
algorithm [22]. Unless otherwise stated, convergence crite-
ria are achieved when the maximum of the normalized
absolute residuals in all equations is reduced to a value
below 10�6. Details of the numerics and implementation
are available in the works of Li [23].

3.1. Grid distribution

On the grid distribution, the �eye� type grid distribution
surrounding the hot wire as depicted in Fig. 2 is adopted.
Near to the wall, the grid distribution is much finer to
resolve the intricate flow features as expected. The grid is
non-uniform, and has locally refined features around the
cylinder to obtain better resolution of flow field near the



Table 1
Variation of Cd and Nu with domain size for Re = 1.5 · 10�2

Case (n) Domain
size

Drag coefficient
(Cd)

Nusselt number
(Nu)

1 20D · 20D 7.3089 · 102 0.41082
2 100D · 100D 4.3401 · 102 0.33446
3 200D · 200D 3.7049 · 102 0.32326
4 400D · 400D 3.2617 · 102 0.32004
5 800D · 800D 2.9798 · 102 0.31855
6 1300D · 1300D 2.8617 · 102 0.31721
7 4000D · 4000D 2.7838 · 102 0.31685

Fig. 2. The grid distribution near the wall and the around the hot wire.
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cylinder. The grid lines are closely aligned with the flow
direction as based on the analysis of De Vahl Davis and
Mallinson formula (refer to [24]).

The grid and computational domain independent checks
are similar to that carried out in Li et al. [25]. Briefly, there
is the grid independent check of the nodes distribution
around the hot wire resulting in the employment of 120
grid points in this work throughout. On the size of the
computational domain, based on the above grid distribu-
tion and the minimum typical Reynolds number for near-
wall hot wire measurement, the initial domain size of
20D · 20D with the hot wire at the centre is increased until
the computed drag coefficient and Nusselt number are
essentially invariant with further increase in the domain
size. The test case is for Reynolds number = 1.5 · 10�2;
the temperature of cylinder wall Tw = 301 K, and the tem-
perature of free stream T0 = 300 K. Correspondingly, the
overheat ratio of hot wire (s) is 1.003, so the influence of
temperature-dependent properties can be neglected. The
results obtained are given in Table 1. It is found that a
dimension of 1300D · 1300D would give rise to a com-
puted Nusselt number differing less than about 0.2% from
the quantity calculated with the much larger dimension of
4000D · 4000D. Lange [26] has largely employed a domain
in excess of 4000D · 4000D and a typical Nusselt number
evaluated at Re = 0.015 gives rise to 0.31627 which concurs
with our calculated quantity of 0.31685 to within 0.1%. In
this work, a domain measuring 1300D · 1300D is used
throughout unless otherwise stated.
4. Heat transfer from a circular cylinder in (free stream)

uniform flow

Based on the grid distribution and computation
domain size of 1300D · 1300D, the heat loss from a
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circular cylinder in uniform flow was computed at the low
Reynolds number range normally encountered in equiva-
lent near wall hot wire measurements. For comparison,
the results in terms of Nusselt number (Nuf, based on fluid
properties evaluated at the film temperature) verses Rey-
nolds number (Ref, also based on fluid properties evaluated
at the film temperature) at the overheat ratio of 1.5 are pre-
sented in Fig. 3 with Oseen�s solution, Kramer�s (experi-
mental) formula for Reynolds number ranging from 0.l
to 40,000, and the empirical formula based on experiments
put forth by Collis and Williams [16]. Also shown is the
numerical prediction by Lange et al. [27]. Our results are
lower than those given by Kramer�s formula. The discrep-
ancies may be caused by the three-dimensional effect
encountered in experiments; such effect is absent in the
present two-dimensional calculation. When compared to
the formula of Collis and Williams [16], our computed
Nusselt number assumes only a slightly smaller quantity
for Ref < 0.03 and shows a slightly faster increase with
Ref > 0.03. Our results agree well with Oseen�s solution
for Reynolds number less than 0.025, but the deviation
increases with increasing Reynolds number, which can be
attributed to the failure/limitation of linear assumption in
Oseen�s solution. Compared with the result of Lange
et al. [27], our Nuf agrees very well with only a very margin-
ally higher value at the lower Reynolds number range. This
discrepancy can perhaps be attributed to the neglect of nat-
ural convection term in the simulation by Lange et al. [27].
Generally, the reasonable agreement with experimental and
Fig. 3. Heat transfer from a circular cylinder in a free stream uniform flow
for s = 1.5.
numerical results augers well for our theoretical formula-
tion and numerical method adopted in the present work.

Based on the above numerical simulation results of hot
wire heat transfer from a circular cylinder in a steady flow,
one can always obtain the calibration equation for the
velocity pertaining to the hot wire under free stream condi-
tions and use as a reference against which subsequent cal-
culations with wall effects are compared to in order to
obtain the near-wall corrections for various near-wall hot
wire measurements.

5. Thermal response of a hot wire in a near-wall flow

5.1. Plausible causes for the discrepancy between the
near-wall hot wire correction curves of Chew and Shi

and Lange et al. for adiabatic wall

Chew and Shi [1] and Lange et al. [2] carried out simu-
lations of near-wall hot wire measurement. From their
results, it is found that the correction curve trend is identi-
cal for near-wall hot wire operation near fully thermal-con-
ducting (isothermal) wall while for the non-conducting
(adiabatic) wall, the trend is totally different. Chew and
Shi�s results showed that as the hot wire is positioned close
to the adiabatic wall, the heat loss from the wire is still
greater than the corresponding case without the wall; this
trend of greater heat loss is found similar to the arrange-
ment of isothermal wall (see also [28]). In their work, Chew
and Shi [1] did not provide details of the computed temper-
ature distribution of the flow field with and without the
wall for comparison, nor present calculation of the heat
flux from the hot wire to indicate a larger proportion of
heat loss has occurred in the region between the wire and
the wall. They, however, used their experimental data
obtained for hot wire operation near an aluminum (ther-
mally more conducting) and perspex (thermally less con-
ducting) wall and showed that these experiments lies
between the extreme limit of their computations for iso-
thermal and adiabatic walls. On the other hand Lange
et al. suggested the insulating wall would suppress the flow
and cause an accumulation of heat between the hot wire
and the wall thereby reducing the temperature gradient in
this region. This would result in a reduction of the mea-
sured Nusselt number. In fact, there was also mentioned
made of the opposite trend observed in Chew and Shi
but no further discourse to resolve the apparent discrep-
ancy by Lange et al. [14]. The following calculations were
carried out to find the cause of the above-mentioned dis-
crepancy between the results of Chew and Shi and Lange
et al., and more importantly to establish the correct trend.

There were several differences in parameter setting
between Chew and Shi and Lange et al., such as the wall
friction velocity Us, hot wire overheat ratio, natural con-
vection, viscous heating as well as the computational
domain size. Each factor was studied and quantified in
terms of the respective contribution to the accuracy of
the computation. It is found that each factor only made



L. Wenzhong et al. / International Journal of Heat and Mass Transfer 49 (2006) 905–918 911
a limited contribution of less than 5% in terms of the eval-
uated Nusselt number and hence is deemed unlikely to
cause a complete change of the trend of the near-wall cor-
rection curve. (Details of the comparison for each factor
are available in [23]). Even the employment of a relatively
very much smaller computational domain of 150D in front
and top of the cylinder, and 240D to the rear of the cylin-
der by Chew and Shi as compared to a domain of
4000D · 4000D is limited to a difference of about 2% for
Nu.

Several computational runs were carried out to ascertain
if setting the convergence criterion ef (maximum difference
between the respective values of stream function on succes-
sive iterations) and ev (maximum difference between the
respective values of vorticity on successive iterations) to
be less than 1.0 · 10�4 is sufficiently good as used in Chew
and Shi [1]. A typical configuration with Re = 0.15, the dis-
tance of hot wire to the wall h0 (�h/D) = 1.5, a shear veloc-
ity of Us = 1.0 m/s giving rise to Y+ (�hUs/m) = 0.5 and an
overheat ratio s = 1.8 was employed. The computed Nu

based on several under-relaxation factors for temperature
are tabulated in Table 2. It is apparent that with ef and
ev = 1.0 · 104, Nu varies with the temperature under-relax-
ation factor; this should not be the case as the intent of
relaxation factor serves to stabilize the iteration process
but not alter the result. Incidentally in Chew and Shi�s sim-
ulation, an under-relaxation factor was employed in con-
junction with ef and ev = 1.0 · 10�4. Also shown in Table
2 are the computed Nu based on the more stringent crite-
Table 2
Nu for Y

+ = 0.5, Us = 1.0 m/s, Re = 0.15, s = 1.8 (Nu0 = 0.495) for adiabatic

ef, ev, et Under-relaxation
factor for temperature

Nusselt number

1.0 · 10�4 1.00 0.46845
0.80 0.64628
0.65 0.70000
0.60 0.80074

1.0 · 10�6 1.00 0.46014
0.80 0.46014
0.65 0.46017
0.60 0.46020

Table 3
Nu for Y

+ = 0.5, Us = 1.0 m/s, Re = 0.15, s = 1.8 (Nu0 = 0.495) for isotherma

ef, ev, et Under-relaxation
factor for temperature

Nusselt
number

1.0 · 10�4 1.00 1.17082
0.80 1.18164
0.65 1.19543
0.60 1.21362

1.0 · 10�6 1.00 1.17103
0.80 1.17103
0.65 1.17132
0.60 1.17181
rion of ef, ev and et = 1.0 · 10�6 which indicates indepen-
dence of the under-relaxation factor employed. It is
suggested therefore that the use of an insufficiently strin-
gent convergence criterion has probably resulted in the per-
ceived discrepancy of trend between Chew and Shi [1] and
Lange et al. [2] for the case of non-conducting wall.

One particularly interesting point to note is that for iso-
thermal wall case, though the convergence criterion for ef,
ev = 1.0 · 10�4 as used by Chew and Shi [1] is not stringent
enough to get the convergent result, it is fortuitous that the
ratio Nu0/Nu (or interpreted as the velocity correction fac-
tor) obtained still showed a similar trend as for Lange
et al. [2,14]. Table 3 shows the computed Nu based on dif-
ferent convergence criterion and employment of various
under-relaxation factor for temperature. One can note that
the variation of Nu is much smaller and limited to below
5%, which may be a possible reason for the fortuitous con-
currence of velocity correction factor trend between Chew
and Shi [12] and Lange et al. [2,14]. In all our simulations,
we ascertain convergence not only by examining residual
levels and ef, ev, et to be less than 1.0 · 10�6 but also by
monitoring relevant integrated quantities that are of perti-
nent interest, such as drag or heat transfer coefficient.

5.2. Main parameters affecting the near-wall hot wire

correction factor

In Chew and Shi [1] and Lange et al. [2,14], it was
implicitly and broadly suggested that there could be a
wall

Nu0
Nu

(or Cu) Remarks: simulated result
exhibit similar trend as

>1.0 Lange et al.
<1.0 Chew and Shi
<1.0 Chew and Shi
<1.0 Chew and Shi

>1.0 Lange et al.
>1.0 Lange et al.
>1.0 Lange et al.
>1.0 Lange et al.
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universal correction curve, which is a function of wall con-
ductivity and Y+. It was, however, also discussed in Chew
and Shi [1] the influence of wire diameter in the correction
curve, which would have implicitly acknowledged that an
additional dimensionless parameter may be required for a
fuller description of the near-wall correction factor. Our
numerous simulations showed that the correction curve is
not only a function of wall conductivity and Y+, but also
a function of wall distance h0. This is perhaps not unex-
pected since the size of the wire diameter in relation to
proximity to the wall will have some bearings on the flow
aerodynamics between the wire and the wall and hence
the associated heat transfer characteristic of the wire. From
the non-dimensional N–S equations and energy equation,
we know that heat transfer is influenced by Re, Pr, Gr

and Ec. In the respective range for hot wire application,
Gr, Ec and Pr have relatively small influence on Nu. Only
the Re has a major influence on Nu. As Re can be deter-
mined or described fully by Y+ and h0 in the near-wall
arrangement, this may suggest that Y+ and h0 are the major
parameters influencing Nu and hence the correction factor
(Cu).

In our simulation, we firstly set Y+ to be constant at 5,
and the value of h0 (�h/D) is varied from 5, 10, 15, 30, 60,
90 to 150; the corresponding velocity correction factor for
both adiabatic wall and isothermal wall is obtained. The
overheat ratio (s) is 1.8. The results of the computation
are given in Fig. 4, which shows that when Y+ is kept con-
stant, both Cu increase with the increase of h0. Cu is the
velocity correction factor, and defined as
Fig. 4. Variation of Cu with h0 for Y
+ = 5.0.
Cu ¼
U 0

Umeas

ð12Þ

where U0 is the upstream flow velocity at the wire center
and Umeas is the measured velocity. Umeas is obtained by
applying the calculated Nu to the �calibration curve� of Nu

versus Re for a hot wire under free stream operating condi-
tion (i.e. an equivalence of Fig. 3 for s = 1.8). (One may
note that such is the procedure in experiment where Umeas

is obtained from the calibration curve nominally expressed
as E(voltage) = f(u) determined under free stream
condition.)

In particular Cua stands for the correction factor per-
taining to the adiabatic wall while Cui is the correction fac-
tor for the isothermal wall. Fig. 4 showed that the two
velocity correction factor curves collapse into one single
curve. This has an important implication. At Y+ P 5,
there is hardly any difference between the heat loss from
the wire under either the thermally conducting or adiabatic
wall. Also as h0 increases beyond about 150, the influence
of wall effect becomes negligible as Cu approaches 1.0.
From Fig. 4 we can surmise that Y+ and h0 are the main
parameters, which affect the velocity correction factor Cu.
(Alternatively, instead of h0, an equivalent factor can be
expressed as d+ ð� U sD

m Þ as pointed out by one reviewer.)
Based on these two main parameters identified, the var-

iation of Cui and Cua are determined for a range of condi-
tions. The variation is obtained for the typical hot wire
operating at an overheat ratio of 1.8 and nominal ambient
temperature of 300 K. Fig. 5 presents the Cu versus Y

+ for
various values of h0. It is interesting to note that for h0 = 5,
although Cu approaches 1.0 as Y

+ becomes larger, this only
occurs for very large Y+ beyond 10.0. It is prudent for one
to bear this in mind for the case of smaller magnitude of h0.
This apparently contradicts various previous experimental
results which show that wall influence is limited to
Y+ = 5 without any reference made to the possible effect
of h0. Closer examinations of some of these mentioned
experiments indicate that h0 was usually rather large at
40 or more when Y+ = 5. For example, the laminar flow
results obtained by Wills [7] correspond to h0 at about 40
at Y+ = 5. In the plot of U+ versus Y+ for the hot wire
placed next to the aluminum wall in Fig. 12 of Chew
et al. [12], their results show that at Y+ = 5 the effect of wall
influence becomes negligible; this corresponds to h0 � 40.
In other experiment to investigate the influence of wall
proximity on hot wire velocity measurements, Oka and
Kostic [8] kept their values of h0 to about 60, which is suf-
ficiently large to rule out significant h0 effects when Y+ = 5.
Krishnamoorthy et al. [11] conducted experiments investi-
gating effect of wire diameter and overheat ratio near an
aluminum wall with d+ ranging between 0.02 and 0.13.
With a hot wire diameter of 5 lm, we can deduce that their
h0 is at least about 40 when Y+ = 5.0.

Furthermore, from the plot of Nu versus Re in their
Fig. 2 for a 5 lm diameter wire at various heights near
an aluminum wall, Chew et al. [12] observed that the wall



Fig. 5. Variation of Cu with Y+ and h0 (s = 1.8).

Fig. 6. Variation of Cu with Y+ and h0 for isothermal wall (s = 1.8) with
comparison to experiments [11].

L. Wenzhong et al. / International Journal of Heat and Mass Transfer 49 (2006) 905–918 913
influence can extend beyond Y+ P 5.0, provided h0 is suf-
ficiently small. It is clear that for their range of smaller h0,
the distribution of Nu does not coincide and only
approaches the corresponding Nu at free stream (taken to
be the measurements at the center of the channel flow) at
Y+ beyond 5. Though the overheat ratio used at s = 1.1
is different from the overheat ratio at s = 1.8 in our simu-
lation, the trend is still evident.

Shown in Fig. 6 is the experimental result of velocity
correction factor for a 5 lm diameter hot wire placed near
an aluminum wall at an overheat ratio of s = 1.8 from
Krishnamoorthy et al. [11]. Krishnamoorthy et al. had
given the original representation of the velocity corrections
in the form of DU+ versus Y+ as did by most other works
like Oka and Kostic [8] and Chew and Shi [1]. However, in
the viscous sublayer, since U+ = Y+, therefore the relation
between Cu and DU+ can be written as

DUþ ¼ Umeas � U 0

U s
¼

U 0ð 1
Cu
� 1Þ

U s

¼
Y þU s

1
Cu
� 1

� �
U s

¼ Y þ 1

Cu
� 1

� �
ð13Þ

In Krishnamoorthy et al., the influence of h0 is not stated
explicitly though they deemed h0 to be a parameter deter-
mining the effect of wall proximity. From Fig. 6, we can
see that their Cu lies rather neatly between the velocity cor-
rection curve of h0 = 5 and h0 = 150 from our calculations.
It is noted that the different h0 employed in the experiments
are in the estimated range of 8 < h0 < 40, and not main-
tained as a constant. (In experiment, it is invariably not
the intent of keeping h0 constant as the hot wire traversed
spatially across the viscous sublayer). In the same Fig. 6,
Cui as taken from Lange [26] is reproduced here which cor-
responds quite closely to our simulated case of h0 = 150.
Lange also did not state explicitly the value of h0 employed
in the simulation. However, judging from the close corre-
spondence of his results with our simulation at h0 = 150,
we may surmise that the h0 employed is possibly rather
large. This is inferred from our simulations where the var-
iation of Cui with Y+ at large h0 is much more limited com-
pared to the smaller h0 values.

More detailed examination of the behavior of Cu is
shown next in Fig. 7 for selected h0. It is observed that as
Y+ increases beyond about 4.0, Cui andCua approach very
close to each other. This may imply that the influence of
the wall thermal conductivity becomes an essentially non-
issue. (Although not shown in Fig. 7, this trend is the same
for h0 = 10, 15, 30 and 60.) Of course in the experiments,
any real wall possesses a thermal conductivity, which
should lie between the two extremes of adiabatic and iso-
thermal walls.

A point worth mentioning from Fig. 7 is that as Y+

increases from 1.0, Cua decreases from a value above 1.0
and goes slightly below 1.0 before rising towards 1.0 again.
This magnitude of the deviation from below Cu = 1.0 at the



Fig. 8. Variation of Cu with Re and h0 (s = 1.8).

Fig. 7. Variation of Cu with Y+ and h0 (s = 1.8).
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turning point and the value of Y+ when it occurs is depen-
dent on h0. The smaller the value of h0, the larger the devi-
ation of Cua below 1.0 is. Incidentally, Lange et al. [26]
actually did obtain a few data points with Cua < 1.0 in
the vicinity of Y+ � 3.46 (see also [2,14]). However, there
is no further elaboration about this crossover of Cua below
1.0 except that it was remarked by Lange and coworkers
[14,26] that ‘‘. . .The correction values calculated for the
largest nondimensional wall distance Y+ = 3.46 were obvi-
ously underestimated. . .’’. This is not surprising since their
interest is largely confined to the lower range of Y+ below
3.0 and there are hardly any calculations in the higher Y+

range where this phenomenon is clearly observed. Also, if
h0 used in their calculation is large, this deviation of Cua

below 1.0 becomes correspondingly smaller and not so eas-
ily discerned. Another feature from Fig. 7 is that for a
given h0, Cua approaches 1.0 faster than Cui as Y+

increases. Since all physical wall substrate has thermal con-
ductivity lying between these two extreme correction
curves, it can be broadly surmised that the correction curve
for a thermally more conducting wall material like alumi-
num which lies closer to the distribution of Cui as compared
to a relatively thermally less conductive wall like perspex
should therefore lead to a larger value of critical Y+

(� Y þ
c , where wall influence becomes negligible) for the for-

mer. Indeed, from numerous works like Chew et al. [12], it
is found that Y þ

c for aluminum wall is larger than for the
perspex wall counterpart. We shall discuss in a more quan-
titative manner about Y þ

c in Section 5.4.
5.3. Near-wall hot wire correction curves based on Re and h0

The curves of Cu in Fig. 5 is very convenient for exper-
imentalists to correct for the near-wall measured Umeas by
applying the associated Y+ and h0 to obtain Cu and hence
U0 at the hot wire location. The same Cu are next expressed
in terms of the usual groupings like Re in Fig. 8 for further
elucidation by the fluid dynamists.

From Fig. 8, for the same Reynolds number, the closer
the hot wire is to the wall as indicated by smaller h0, the
more correction is required for both the adiabatic and iso-
thermal walls. For the same h0, with the increase of Rey-
nolds number, generally Cu will tend towards unity. This
is deemed reasonable since for higher Re flow, both the
momentum and thermal boundary layers become thinner
next to the wall and the heat transfer characteristic of the
hot wire behaves more like under free stream condition.
For the adiabatic wall, however, Cua approaches 1.0 from
above at low Re region, intercept the Cu = 1.0 axis to
assume a quantity slightly below one and then tends
towards unity from below with further increase of Re.

The experiments as found in Fig. 12 of Chew et al. [12]
gives the plots of U+ versus Y+ for a 5 lm diameter wire at
various overheat ratio and wire length L to diameter D

ratios near an aluminum wall. We selected the data pertain-



Fig. 10. Variation of Cu with Re and h0 for s = 1.1 with comparison to
experiments Cue [12].
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ing to the overheat ratio of 1.8 and L/D = 400 to minimize
possible heat loss to the prongs so as to ensure less devia-
tion from two-dimensionality for comparison to our simu-
lation; the said data are reduced to the form of
Cu = f(Re,h0). In Fig. 9, h0 for the experimental data are
deduced to be at 10, 12.5, 17, 21, 25, 30, 40 and 60. It is
clear that the predicted velocity correction factors are con-
sistent with the corresponding experimental points for
h0 = 10, 30 and 60. The simulation provides a lower bound
for the experiment at the same h0. The experimental data
for h0 = 12.5 fall between the two predicted correction
curves for h0 = 10 and 15, the experimental data for
h0 = 17, 21 and 25 lie between the two predicted correction
curves for h0 = 15 and 30, and the experimental data for
h0 = 40 lies between the two predicted curves for h0 = 30
and 60 (Fig. 10).

5.4. On the critical Y þ
c and h0

For ease of discussion, we shall define critical Y þ
c as the

value of Y+ where the influence of wall takes on a vastly
diminishing role for hot wire operating near to the wall.
We further define ðY þ

c Þa to be the critical Y þ
c for adiabatic
Fig. 9. Variation of Cu with Re and h0 for comparison to experiments [12].

Table 4
Variation of critical Y þ

c with h0

h0 5 10 15

ðY þ
c Þa 2.71 2.65 2.59

ðY þ
c Þi 15.8 10.2 6.30
wall while ðY þ
c Þi to be the critical Y þ

c for isothermal wall
case. Based on Fig. 5 (data not shown for Y+ > 5), we
can obtain Y þ

c by determining the value Y+ where the
respective Cu distribution becomes unity within a stipulated
margin of ±5% based on the typical experimental uncer-
tainty expected in near-wall measurements. The results of
Y þ

c are listed in Table 4.
From Table 4, it is clear that with the increase of h0,

both ðY þ
c Þi and ðY þ

c Þa are decreasing. This is reasonable
since a smaller hot wire diameter should have diminishing
influence on the flow and temperature fields. Perhaps what
is more surprising (in that it is rather counter-intuitive) is
even at h0 = 150, Y þ

c still takes on a quantity larger than
2.0 for either the adiabatic or isothermal wall. That is,
the distribution of Y þ

c is only asymptotic towards a null
quantity at very large h0. Closer examination suggests this
could be the situation since in near-wall hot wire operation,
the Reynolds number is very small indeed and accordingly,
there is the dominance of the viscous diffusive effect which
influence extends much further spatially. (In the usual
encounter of flow over much larger scale cylinder at much
higher Reynolds number, the inertia effect is dominating
and the flow physics associated with it is not directly appli-
cable to the extremely low Re encountered in near-wall hot
wire operation.) From Table 4, since both ðY þ

c Þa and ðY þ
c Þi
30 60 90 150

2.54 2.47 2.44 2.43
5.02 3.53 3.12 3.12



Fig. 11. Variation of Cui with Re and h0 for s = 1.1 and 1.8.
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are dependent on h0, it is logical to assume that Y þ
c for any

wall substrate material is a function of h0 too.
It may be noted that as Y þ

c were obtained from experi-
ments with air as the working medium and employment
of the more traditional wall substrate material (such that
the thermal conductivity of the wall is larger than that of
air), one can then expect that Y þ

c < ðY þ
c Þi at the same h0

since isothermal wall can be regarded as infinitely thermal
conducting. This notion of Y þ

c < ðY þ
c Þi follows naturally

from the expected (experimental) distribution of Cu versus
Y+ assuming a larger magnitude than the corresponding
Cui for a given h0 which will then logically �intersect� the
Cu = 1.0 at a smaller Y þ

c . For any wall substrate with work-
ing air medium, one should be aware that for a given h0
though Y þ

c is bounded by ðY þ
c Þi at the upper limit, it is

not so for ðY þ
c Þa to serve as the lower limit. This is evident

from the Cua distribution taking on a non-monotonically
functional form and which crosses the Cu = 1.0 axis unlike
that found for the Cui distribution (see Fig. 5). For exam-
ple, Chew et al. [12] found experimentally that Y þ

c for per-
spex wall takes on a value of 2.1 for their hot wire of
0.63 lm diameter, a quantity smaller than all the computed
ðY þ

c Þi and ðY þ
c Þa, regardless of h0.

Experimentally, Chew et al. [12] found that the critical
Y þ

c for aluminum wall takes on decreasing value of 5.0,
3.7 and 3.0 corresponding to hot wire diameter of 5 lm,
1.27 lm, 0.63 lm, respectively. Although h0 is not provided
explicitly, it can be deduced from their Figs. 2, 5 and 7 and
evaluated as h0 � 25, 50 and 110 for the decreasing hot wire
diameter. From the tabulated quantities of ðY þ

c Þi in Table 4
and by fitting a spline curve through the data points, we
obtain ðY þ

c Þi as 5.0, 3.9 and 3.1, respectively, for h0 = 25,
50 and 110. These calculated quantities of ðY þ

c Þi are higher
than the correspondingly measured critical Y þ

c for the alu-
minum wall, although it may be mentioned the experiments
were based on overheat ratio of 1.1 as opposed to the cal-
culation at s = 1.8.

Lastly, it may be mentioned that Chew et al. [12]
obtained the critical Y þ

c for perspex wall as 3.0, 2.6 and
2.1 corresponding to hot wire diameter of 5 lm, 1.27 lm,
0.63 lm, respectively. From their respective Figs. 4, 6 and
8, it can be deduced that h0 � 12.5, 40 and 77.5 for the
decreasing hot wire diameter. At the same h0, our evaluated
ðY þ

c Þi from the spline curve fitting to the data points from
Table 4 give rise to the quantities of 8.8, 4.4, 3.2; all of
which are larger than the respective measured counterpart
for the perspex wall. This is consistent with the discussion
above on ðY þ

c Þi as the upper bound.

5.5. On the velocity correction factor, Cui, based on overheat

ratio of 1.1

As for Section 5.3 on the velocity correction factor
based on overheat ratio of 1.8, the computation for over-
heat ratio s = 1.1 is carried out for both under free stream
and near-wall isothermal conditions to obtain Cui. Fig. 10
shows the distribution of Cui with Re for selected h0 with
comparison to experiments from Chew et al. [12]. The
experiments were deduced from their Fig. 2 for a 5 lm
diameter mounted next to the aluminum wall. (We shall
use Cue to denote the experiment in the figure.) It is clear
from Fig. 10 that the predicted Cui agrees reasonably well
by taking on a smaller quantity than the corresponding
Cue for h0 = 5, 10, 30 and 60. The experimental data for
h0 = 17 falls between the two predicted correction curves
for h0 = 15 and 30. On the same figure, the loci for
Y+ = 1.0, 2.0, 3.0, 4.0 and 5.0 are provided to give an indi-
cation of the proximity to the wall.

To investigate the influence of overheat ratio on the
velocity correction factor, the variation of Cui with Re

and h0 for s = 1.1 and 1.8 are given in figure for compari-
son. Fig. 11 shows that the smaller overheat ratio is associ-
ated with smaller velocity correction. To further quantify
the difference, Fig. 12 shows the variation of DCu

(�100% · [Cui(s = 1.1) � Cui(s = 1.8)]/Cui(s = 1.8)) with
Re and h0. For the same h0, with the decrease of Reynolds
number, DCu becomes larger. One can also note that DCu is
a function of h0; the smaller the value of h0, the greater the
difference at a given Re. Lange et al. [2] showed that the
velocity correction factor is weakly dependent on the over-
heat ratio. Their observations seem to be in direct contra-
diction to our simulation results. It is important to note,
however, their conclusion is based on results obtained for
s = 1.003 and 1.27, and there is no mention of the associ-
ated value of h0. From Fig. 12, if h0 is large at say 90,
the difference is limited to less than 10%. For even larger
h0 value, it is expected to diminish further.

From their experiments performed near an aluminum
wall with an overheat ratio ranging from 1.06 to 1.8, Krish-



Fig. 12. Variation of DCu with Re between overheat ratio 1.1 and 1.8.
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namoorthy et al. [11] found that generally the deviation of
the measured mean U+ distribution from the linear profile
of U+ = Y+ for Y+

6 5 becomes larger with the use of a
larger overheat ratio. This observation is consistent with
our simulation result for s = 1.1 and 1.8. Although the low-
est overheat ratio Krishnamoorthy et al. [11] used at
s = 1.06 is different from our lower overheat ratio at
s = 1.1, experimental results from Krishnamoorthy et al.
[11] showed that the difference between the U+ distribu-
tions for s = 1.06 and s = 1.1 is quite negligible.

6. Concluding summary

A numerical study of the correction curve for near-wall
hot wire measurements under the two extreme cases of iso-
thermal and adiabatic wall conditions was carried out. A
summary of the findings are given as follows:

1. A possible reason for the apparent discrepancy between
the observed trend of the computed near-wall correction
curve of Chew and Shi [1] and Lange et al. [2,14] next to
a thermally non-conducting wall can be attributed to the
former employment of an insufficiently stringent crite-
rion of convergence set at 10�4 for ef, ev. It is found that
a more stringent convergence criterion at 10�6 is needed.

2. For the given isothermal and adiabatic wall conditions,
the near-wall correction curve given as Cuð� U0

Umeas
Þ can

be expressed in terms of two non-dimensional quanti-
ties, namely Y+ ð� h0U s

m Þ and h0ð� h
DÞ. Based on these

two non-dimensional parameters, the correction factor
curves were obtained for 1.0 6 Y+

6 5.0, and
5 6 h0 6 150. The computed results compared well to
the experiments of Krishnamoorthy et al. [11] and Chew
et al. [12].

3. From the near-wall correction curve, the critical Y þ
c for

negligible wall influence on hot wire measurement is
obtained for both isothermal wall ðY þ

c Þi and adiabatic
wall ðY þ

c Þa. Both ðY þ
c Þi and ðY þ

c Þa decrease with increas-
ing h0, and ðY þ

c Þi can also serve as the upper bound for
Y þ

c obtained from experiments.
4. It is important to note that the critical Y+ for negligible

wall influence on near-wall measurement is also highly
dependent on h0 for both the adiabatic and isothermal
walls.

5. From the simulation carried out for s = 1.1 and 1.8, it is
found that the influence of overheat ratio on the velocity
correction factor may not be negligible. The said influ-
ence increases with decreasing h0 and decreasing Re.
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